ОПИСАНИЕ ТИПА СТАНДАРТНОГО ОБРАЗЦА

СТАНДАРТНЫЙ ОБРАЗЕЦ СОСТАВА ИСКУССТВЕННОЙ СМЕСИ СЖИЖЕННЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ (ШФЛУ-П-1)

ГСО 10612-2015

Назначение стандартного образца:

- поверка, калибровка, градуировка средств измерений, а также контроль метрологических характеристик при проведении их испытаний, в том числе с целью утверждения типа;
- аттестация методик (методов) измерений;
- контроль точности результатов измерений, полученных по методикам (методам) в процессе их применения в соответствии с установленными в них алгоритмами.

Область промышленности, производства, где преимущественно может применяться стандартный образец: контроль технологических процессов и промышленных выбросов.

Описание стандартного образца:

Стандартный образец представляет собой искусственную смесь сжиженных углеводородных газов. Определяемые компоненты: метан ($\mathrm{CH_4}$), этан ($\mathrm{C_2H_6}$), этэн (этилен, $\mathrm{C_2H_4}$), пропан ($\mathrm{C_3H_8}$), пропен (пропилен, $\mathrm{C_3H_8}$), изобутан (i- $\mathrm{C_4H_{10}}$), нормальный бутан (n- $\mathrm{C_4H_{10}}$), бутен 1 (бутилен, $\mathrm{C_4H_8}$), изобутен 1 (изобутилен, i- $\mathrm{C_4H_8}$), транс-бутен-2 (транс-2 бутен, $\mathrm{C_4H_8}$), цис-бутен-2 (цис-2 бутен, $\mathrm{C_4H_8}$), бутадиен-1,3 ($\mathrm{C_4H_6}$), изопентан (i- $\mathrm{C_5H_{12}}$), нормальный пентан (n- $\mathrm{C_5H_{12}}$), 2,2-диметилпропан (неопентан neo- $\mathrm{C_5H_{12}}$), пентен-1 (1-пентен $\mathrm{C_5H_{12}}$), 3-метилбутен-1 (3-метил-1-бутен $\mathrm{C_5H_{12}}$), 2-метилбутен-1 (2-метил-1-бутен $\mathrm{C_5H_{12}}$), транс-пентен-2 ($\mathrm{C_5H_{12}}$), цис-пентен-2 (цис-2-пентен $\mathrm{C_5H_{12}}$), гексан ($\mathrm{C_6H_{14}}$), метанол ($\mathrm{CH_3OH}$). Смесь находится под давлением в баллонах постоянного давления поршневого типа вместимостью от 1 до 4 дм³ фирмы Scott Gases модели Р1К или Р4К, фирмы Welker Engineering Company модели GA и GP2-G , CKБ «Хроматък» типа ПП-1000, ПП-2000, БП или аналогичных баллонах, по характеристикам не уступающих перечисленным. Допускается изготавливать в баллонах, оборудованных сифонным устройством (например, баллоны по ТУ 1411-016-03455343-2004 с сифонным устройством фирмы CEODEUX PURETEC S.A. серии D 265).

Исходные вещества, применяемые для приготовления стандартных образцов, приведены в таблице 1.

Таблица 1 - Исходные вещества, применяемые для приготовления стандартных образцов

аолица 1 - исходные вещества, применяемые для приготовления стандартных образцов		
	Хим.	Нормативные документы,
Исходное вещество	формула	которым должны соответствовать исходные
		вещества
Метан	CH ₄	ТУ 51-841-87
Этан	C_2H_6	ТУ 6-09-2454
Этилен	C_2H_4	ГОСТ 25070-87
Пропан	C_3H_8	ТУ 51-882
Пропилен	C_3H_6	ГОСТ 25043-87
Изобутан	i-C ₄ H ₁₀	TY 51-945, TY 6-09-2454
Нормальный бутан	n-C ₄ H ₁₀	ТУ 51-946-90
Бутилен	C ₄ H ₈	Sigma-Aldrich Product
Изобутилен	i-C ₄ H ₈	Sigma-Aldrich Product

	Хим.	Нормативные документы,
Исходное вещество	формула	которым должны соответствовать исходные
		вещества
Транс-2 бутен	C_4H_8	Sigma-Aldrich Product
Цис-2 бутен	C_4H_8	Sigma-Aldrich Product
Бутадиен-1,3	C_4H_6	Sigma-Aldrich Product
Изопентан	i-C ₅ H ₁₂	Sigma Aldrich Product № 277258
Нормальный пентан	n-C ₅ H ₁₂	ТУ 6-09-922-76
Неопентан	neo-C ₅ H ₁₂	Sigma-Aldrich Product № 644439
1-пентен	C_5H_{10}	Sigma-Aldrich Product
3-метил-1-бутен	C_5H_{10}	Sigma-Aldrich Product
2-метил-1-бутен	C_5H_{10}	Sigma-Aldrich Product
транс-пентен-2	C_5H_{10}	Sigma-Aldrich Product
Цис-пентен-2	C_5H_{10}	Sigma-Aldrich Product
Гексан	C_6H_{14}	ТУ 6-09-3375
Метанол	CH ₃ OH	ГОСТ 2222-95

Форма выпуска: серийное (непрерывное) производство.

Метрологические характеристики стандартного образца:

аттестованная характеристика: молярная доля компонента, %; нормированные метрологические характеристики CO приведены в таблице 2.

Таблица 2 – Нормированные метрологические характеристики стандартного образца

		0
Наименование аттестуемой характеристики	Интервал допускаемых аттестованных значений, %	Относительная расширенная неопределенность (U)* при коэффициенте охвата $k=2,\%$
молярная доля метана (CH ₄)	от. 0,000010 до 0,0050 св. 0,0050 до 0,10 св. 0,10 до 1,0	58 $U = 0.07 \cdot X + 0.00006$ $U = 0.048 \cdot X + 0.0022$
молярная доля этана (C_2H_6)	от. 0,000010 до 0,0050 св. 0,0050 до 0,10 св. 0,10 до 1,0 св. 1,0 до 5,0	58 $U = 0.07 \cdot X + 0.00006$ $U = 0.048 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$
молярная доля этилена (C_2H_4)	от. 0,000010 до 0,0050 св. 0,0050 до 0,10 св. 0,10 до 1,0 св. 1,0 до 5,0	58 $U = 0.07 \cdot X + 0.00006$ $U = 0.048 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$
молярная доля пропана (C_3H_8)	св. 0,000010 до 0,1 св. 0,10 до 1,0 св. 1,0 до 10,0 св. 10 до 50 св. 50,0 до 99,8	58 $U=0.048 \cdot X + 0.0022$ $U=0.028 \cdot X + 0.022$ $U=0.008 \cdot X + 0.22$ $U=0.75 - 0.0025 \cdot X$
молярная доля пропилена (C_3H_6)	от. 0,000010 до 0,0050 св. 0,0050 до 0,10 св. 0,10 до 1,0 св. 1,0 до 5,0	58 $U = 0.07 \cdot X + 0.00006$ $U = 0.048 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$

		Относительная
Наименование	Интервал допускаемых	расширенная неопределенность
аттестуемой	аттестованных	(U)* при коэффициенте охвата
характеристики	значений, %	
	св. 0,000010 до 0,010	k = 2, % 58
	св. 0,010 до 1	$U = 0.048 \cdot X + 0.0022$
молярная доля	св. 1,0 до 10,0	$U = 0.028 \cdot X + 0.0022$
изобутана (i - C_4H_{10})	св. 1,0 до 10,0	$U = 0.008 \cdot X + 0.022$
	св. 50,0 до 99,8	$U = 0.75 - 0.0025 \cdot X$
	св. 0,000010 до 0,010	58
молярная доля	св. 0,010 до 1	$U = 0.048 \cdot X + 0.0022$
нормального бутана	св. 1,0 до 10,0	$U = 0.028 \cdot X + 0.022$
$(n-C_4H_{10})$	св. 1,0 до 10,0	$U = 0.008 \cdot X + 0.022$
(n-C411]0)	св. 50,0 до 99,8	$U = 0.75 - 0.0025 \cdot X$
	от. 0,000010 до 0,0050	58
монариза пона	св. 0,0050 до 0,10	$U = 0.07 \cdot X + 0.00006$
молярная доля бутилена (C_4H_8)	св. 0,10 до 1,0	$U = 0.048 \cdot X + 0.00000$ $U = 0.048 \cdot X + 0.0022$
бутилена (С4118)	св. 0,10 до 1,0 св. 1,0 до 5,0	$U = 0.028 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$
	от. 0,000010 до 0,0050	58
монариод пона	св. 0,0050 до 0,10	$U = 0.07 \cdot X + 0.00006$
молярная доля изобутилена (i - C_4H_8)	св. 0,10 до 1,0	$U = 0.048 \cdot X + 0.00000$ $U = 0.048 \cdot X + 0.0022$
изобутилена (1-С4118)	св. 0,10 до 1,0 св. 1,0 до 5,0	$U = 0.048 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$
	от. 0,000010 до 0,0050	58
Modanyoa Hoda	св. 0,0050 до 0,10	$U = 0.07 \cdot X + 0.00006$
молярная доля транс-2-бутена (C_4H_8)	св. 0,0030 до 0,10 св. 0,10 до 1,0	$U = 0.048 \cdot X + 0.00000$ $U = 0.048 \cdot X + 0.0022$
транс-2-бутена (С4П8)		
	св. 1,0 до 5,0 от. 0,000010 до 0,0050	$U = 0.028 \cdot X + 0.022$ 58
MOHanyoa Hoha	св. 0,0050 до 0,10	$U = 0.07 \cdot X + 0.00006$
молярная доля цис-2-бутена (C_4H_8)	св. 0,0030 до 0,10 св. 0,10 до 1,0	$U = 0.048 \cdot X + 0.00000$ $U = 0.048 \cdot X + 0.0022$
цис-2-бутена (С4П8)		$U = 0.028 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$
	св. 1,0 до 5,0 от. 0,000010 до 0,0050	58
MOHanyoa Hoha	св. 0,0050 до 0,10	$U = 0.07 \cdot X + 0.00006$
молярная доля		$U = 0.048 \cdot X + 0.00000$ $U = 0.048 \cdot X + 0.0022$
бутадиена-1,3 (C ₄ H ₆)	св. 0,10 до 1,0	$U = 0.028 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$
	св. 1,0 до 5,0	58
MOTOR TOTAL	от. 0,000010 до 0,0050	
молярная доля	св. 0,0050 до 0,10	$U = 0.07 \cdot X + 0.00006$ $U = 0.048 \cdot X + 0.0022$
изопентана (i-C ₅ H ₁₂)	св. 0,10 до 1,0	$U = 0.028 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$
	св. 1,0 до 10,0	U = 58
молярная доля	от. 0,000010 до 0,0050	
нормального пентана	св. 0,0050 до 0,10	$U = 0.07 \cdot X + 0.00006$
$(n-C_5H_{12})$	св. 0,10 до 1,0	$U = 0.048 \cdot X + 0.0022$
молярная доля неопентана (neo- C_5H_{12})	св. 1,0 до 10,0	$U = 0.028 \cdot X + 0.022$
	от 0,000010 до 0,00010	58
	св. 0,0050 до 0,10	$U = 0.07 \cdot X + 0.00006$
` - /	св. 0,10 до 1,0	$U = 0.048 \cdot X + 0.0022$
молярная доля 1 -пентена (C_5H_{10})	от. 0,000010 до 0,0050	58
	св. 0,0050 до 0,10	$U = 0.07 \cdot X + 0.00006$
	св. 0,10 до 1,0	$U = 0.048 \cdot X + 0.0022$
	св. 1,0 до 10,0	$U = 0.028 \cdot X + 0.022$

Наименование аттестуемой характеристики	Интервал допускаемых аттестованных значений, %	Относительная расширенная неопределенность $(U)^*$ при коэффициенте охвата $k=2,\%$
молярная доля 3 -метил- 1 -бутен (C_5H_{10})	от. 0,000010 до 0,0050 св. 0,0050 до 0,10 св. 0,10 до 1,0 св. 1,0 до 10,0	58 $U = 0.07 \cdot X + 0.00006$ $U = 0.048 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$
молярная доля 2 -метил-1-бутен (C_5H_{10})	от. 0,000010 до 0,0050 св. 0,0050 до 0,10 св. 0,10 до 1,0 св. 1,0 до 10,0	58 $U = 0.07 \cdot X + 0.00006$ $U = 0.048 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$
молярная доля транс-пентена-2 (C_5H_{10})	от. 0,000010 до 0,0050 св. 0,0050 до 0,10 св. 0,10 до 1,0 св. 1,0 до 10,0	58 $U = 0.07 \cdot X + 0.00006$ $U = 0.048 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$
молярная доля цис-пентена-2 (C ₅ H ₁₀)	от. 0,000010 до 0,0050 св. 0,0050 до 0,10 св. 0,10 до 1,0 св. 1,0 до 10,0	58 $U = 0.07 \cdot X + 0.00006$ $U = 0.048 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$
молярная доля гексана (C_6H_{14}) молярная доля	от. 0,000010 до 0,0050 св. 0,0050 до 0,10 св. 0,10 до 1,0 св. 1,0 до 10,0 св. 0,000010 до 0,0010	58 $U = 0.07 \cdot X + 0.00006$ $U = 0.048 \cdot X + 0.0022$ $U = 0.028 \cdot X + 0.022$ 58
метанола (СН ₃ ОН)	св. 0,0010 до 0,01	$U = 0.07 \cdot X + 0.00006$

^{* –} соответствует границам относительной погрешности ($\pm \Delta_0$) при доверительной вероятности (P=0,95).

Характеристики допускаемого отклонения молярной доли компонента от номинальных (заказываемых) приведены в таблице 3.

Таблица 3 - Характеристики допускаемого отклонения молярной доли компонента от номинальных (заказываемых)

Интервал аттестованных значений СО	Пределы допускаемого относительного
(молярная доля, %)	отклонения ±Д, %
от 0,000010 до 0,0010	100
св. 0,0010 до 0,010	от минус 100 до 50
св. 0,010 до 1,0	от минус 50 до 25
св. 1,0 до 10,0	от минус 25 до 10
св. 10,0 до 50,0	от минус 10 до 5
св. 50,0 до 99,8	от минус 5 до 0,5

Срок годности экземпляра: 12 месяцев.

Знак утверждения типа: наносится печатным способом в правом нижнем углу первого листа паспорта.

Комплектность стандартного образца: экземпляр стандартного образца, паспорт, инструкция по хранению и эксплуатации.

Документы, устанавливающие требования к стандартному образцу:

1. Техническая документация, по которой выпущен (будет выпускаться) стандартный образец: ТУ 0272-010-53373468-2015 «Стандартные образцы состава сжиженных углеводородных газов — широкой фракции легких углеводородов. Технические условия».

На общие метрологические и технические требования: ГОСТ Р 8.776-2011 «Стандартные образцы состава газовых смесей. Общие метрологические и технические требования».

2. Документы, определяющие применение стандартного образца:

На методики (методы) измерений (испытаний):

ГОСТ Р 54484-2010 «Газы углеводородные сжиженные. Методы определения углеводородного состава» и др.

На методики поверки (калибровки): ГОСТ 8.616-2013 «ГСИ. Лабораторные и потоковые хроматографы для контроля углеводородного состава сжиженных углеводородных газов. Методика поверки» и др.

- 3. Нормативный документ на государственную поверочную схему: ГОСТ 8.578-2008 «ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах». В соответствии с ГОСТ 8.578-2008 разряд СО соответствует первому.
- 4. Периодичность актуализации технической документации на тип стандартного образца один раз в пять лет.

Номер экземпляра (партии), дата выпуска: представлен в целях утверждения типа экземпляр СО, баллон № 36595, 10.10.2014 г.

Изготовитель:

Общество с ограниченной ответственностью «ПГС-сервис» (ООО «ПГС-сервис»), 624250, Свердловская обл., г.Заречный, ул.Попова, 9а. ИНН 6609009040.

Заявитель: Общество с ограниченной ответственностью «ПГС-сервис» (ООО «ПГС-сервис»), 624250, Свердловская обл., г.Заречный, ул.Попова, 9а.

Испытательный центр: Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» (ФГУП «ВНИИМ им. Д.И. Менделеева»); 190005, г. Санкт-Петербург, Московский пр., 19, № РОСС RU.0001.310494 выдан 09.09.2014 г.

Заместитель

Руководителя Федерального агентства

по техническому регулированию

и метрологии

С.С.Голубев

2015 г.

M Company